prepared as above, and the mixture was stirred at 95-100 °C for 2 h 30 min. After the usual workup and chromatographic purification, the indole 11 was obtained: 83 mg (20%).

Method C. A solution of crude 1 phenylhydrazone (670 mg, 2.63 mmol) in freshly distilled 98-100% HCOOH (1 mL, 26.3 mmol) was refluxed for 1 h. After cooling, AcOEt (10 mL) was added, the mixture was made alkaline with saturated aqueous HNaCO₃ solution and extracted with AcOEt. Evaporation of the dried extracts gave a dark red oil (530 mg) which was chromatographed as above to give the indole 11 (250 mg, 26%).

Acknowledgment. This investigation was supported by the Comisión Asesora de Investigación Científica y Técnica, Spain (project numbers 3964/81 and 3229/83). The financial support given by the Generalitat de Catalunya to N.C. is sincerely acknowledged. We are grateful to Mr. Antoni Torrens for experimental contributions.

Notes

An Expedient Synthesis of Bis(trimethylsilyl)carbodiimide

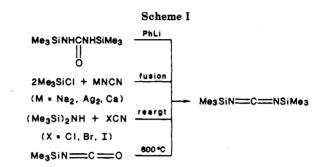
Khuong Mai* and Ghanshyam Patil

Section of Medicinal/Organic Chemistry, American Critical Care Division, American Hospital Supply Corporation, McGaw Park, Illinois 60085

Received June 12, 1986

We have recently reported the preparation of a number of silylated compounds using alkylsilyl cyanides as silylating agents.¹ We now wish to describe an extension of this work involving the preparation of bis(trimethylsilyl)carbodiimide (BTMSC), which in turn is a very useful versatile synthetic intermediate.²⁻⁹

In general, BTMSC can be prepared either by the dehydration of bis(trimethylsilyl)urea,^{10,11} by the condensation of a metal cyanamide with trimethylsilyl chloride-,¹²⁻¹⁵ by the reaction of hexamethyldisilazane with cyanogen halide followed by rearrangement,¹⁶ or by heating


(1) Mai, K.; Patil, G. J. Org. Chem. 1986, 51, 3545.

(2) Fetyukhin, V. N.; Vovk, M. V.; Dergunov, Y. I.; Samarai, L. I. Zh. Obshch. Khim. 1981, 51, 1678; Chem. Abstr. 1981, 95, 150805s.

(3) Drake, J. E.; Glavincevski, B M.; Henderson, H. E., Hemmings, R. T. Synth. React. Inorg. Met.-Org Chem. 1978, 8, 7; Chem. Abstr. 1978, 89, 24469y.

- (4) Drake, J. E.; Anderson, H. J. Inorg. Nucl. Chem. 1976, 12, 563;
 1978, 14, 137; Chem. Abstr. 1976, 85, 94457j; 1978, 89, 122276c.
 (5) Gorbatenko, V.; Gertsyuk, M.; Samarai, L. Zh. Org. Khim. 1977,
- 13, 899; Chem. Abstr. 1977, 87, 23386r.
- (6) Lidy, W.; Sundermeyer, W. Chem. Ber. 1976, 109, 1486, 1491; Chem. Abstr. 1976, 85, 5760n, 5167z.
- (7) Vostokov, I.; Gordetsov, A.; Dergunov, Y. Zh. Obshch. Khim. 1975, 45, 2234, 2237; Chem. Abstr. 1976, 84, 44291j, 44292k.
- (8) Drake, J. E., Hemmings, R. T.; Henderson, H. E. J. Chem. Soc.,
- Dalton Trans. 1976, 336; Chem. Abstr. 1976, 84, 121964k. (9) Dergunov, Y. I.; Vostokov, I. A.; Bychkov, V. T. Zh. Obshch. Khim. 1972, 42, 371; Chem. Abstr. 1972, 77, 88610x.
- (10) Pump, J.; Wannagat, W. Ann. 1962, 652, 21; Chem. Abstr. 1962, 57, 4280.
- (11) Kozyukov, V. P.; Orlov, G. I.; Mironov, V. F. Zh. Obshch. Khim. 1981, 51, 245; Chem. Abstr. 1981, 94, 192402t.
- (12) Stenzel, J.; Sundermeyer, W. Chem. Ber. 1967, 100, 3368; Chem. Abstr. 1968, 68, 2941k.
- (13) Cradock, S. Inorg. Synth. 1974, 15, 164; Chem. Abstr., 1974, 81, 152355e.
- (14) Gerega; V. F.; Dergunov, Y. L.; Ivanov, M. G. Zh. Obshch. Khim. 1976, 46, 1188; Chem. Abstr. 1976, 85, 108701y.
- (15) Vostokov, I. A. Zh. Obshch. Khim. 1983, 53, 577; Chem. Abstr. 1983, 99, 5736y.

(16) Hundeck, J.; Volkamer, K. J. Symp. Organosilicon Chem., Sci. Commun., Prague 1965, 320; Chem. Abstr. 1966, 65, 10606f.

trimethylsilyl isocyanate at 600 °C¹⁷ (Scheme I). Very recently, a patent was issued for the preparation of this carbodiimide.¹⁸

As seen in Scheme I, the reactions take place only under forcing conditions. We wish to report here that BTMSC can be prepared in 90% yield by the reaction of trimethylsilyl cyanide (Me₃SiCN) with cyanamide (eq 1). The reaction proceeds extremely fast and is complete within seconds. This is a pleasantly unexpected result since it has been reported that Me₃SiCN reacts with amines only at higher temperature (70 °C) and over prolonged periods of time (30 min).¹

Me₃SiN=C=NSiMe₃

Bis(trimethylsilyl)carbodiimide. Performance of the reaction under an inert gas atmosphere is not necessary, but exposure of the reaction mixture or the product to moistue should be avoided.

In a well-ventilated hood, Me₃SiCN (12 g, 0.12 mol) was slowly added to cyanamide (2.1 g, 0.05 mol). A vigorous reaction was observed intantaneously as gaseous hydrogen cvanide was vented and trapped in a bottle containing caustic solution. After the exothermic reaction subsided (20 s), the homogeneous clear oil was distilled at atmospheric pressure to afford a colorless oil: yield, 11 g (91.7%); bp 158-162 °C; ¹H NMR (neat, with Me₄Si as internal standard) δ 018; IR spectrum indicates a very strong band typical for carbodiimide at 2190 cm⁻¹ (lit.¹⁰ bp 164 °C, IR 2190 cm⁻¹).

It should be noted that when only 1 equiv of Me₃SiCN was used, two clear layers were observed. Surprisingly enough, distillation also gave the bis(trimethylsilyl)carbodiimide in 80% yield instead of the expected N-mono(trimethylsilyl)cyanamide. Also after

0022-3263/87/1952-0275\$01.50/0

Experimental Section

⁽¹⁷⁾ Mironov, V. F.; Kozyukov, P.; Sheludyakova, s. V. Zh. Obshch. Khim. 1978, 48, 2136; Chem. Abstr. 1978, 69, 215484j. (18) Vostokov, I. S.U. Patent 906 998 1982. See also: J. Synth.

Methods 1983, 9, 75574Y.

distillation, the bottom liquid layer solidified to an undentified brown solid lump.

Registry No. N=CNH₂, 420-04-2; Me₃SiCN, 7677-24-9; Me₃SiN=C=NSiMe₃, 1000-70-0.

Surfactant and Cation Effects on the Electrochemical Reduction of an α . β -Unsaturated Ketone

David A. Jaeger,* Durgadas Bolikal, and Buddhadeb Nath

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Received June 10, 1986

There have been numerous studies of surfactant effects on electrochemical reactions.¹ However, only a few have addressed synthetic applications.² Herein, we report the effects of surfactants and cations on the electrochemical reduction of α,β -unsaturated ketone 1 at a Hg cathode.

Ketone 1 has been electrochemically reduced previously under various conditions.³ For example, in 1:1 (v/v)EtOH-pH 5.1 NaOCOMe-MeCO₂H buffer, its polarography gives two one-electron waves (I and II) with half-wave potentials $(E_{1/2})$ of -1.02 and -1.42 V, respectively,^{3a} and its electrolysis produces meso-2 at -1.15 V and 2 and 3 at -1.55 V (vs. SCE).³ The first electron transfer is proton assisted³ and yields radical A (eq 1). Dimerization of A

trans-PhCH=CHCOMe PhĊHCH₂COMe PhCH₂CH₂COMe 1 2 3

$$1 \xrightarrow{e^{-}}_{H^{+}} Ph\dot{C}HCH \xrightarrow{=} C(OH)Me$$
(1)

$$2\mathbf{A} \to \mathbf{2} \tag{2}$$

$$A \xrightarrow{e^{-}} Ph\bar{C}HCH \xrightarrow{=} C(OH)Me \xrightarrow{H^{+}} 3$$
(3)
B

gives 2 (eq 2), and its further reduction, 3, through carbanion **B** (eq 3).⁴ Thus, even at potentials more cathodic than $E_{1/2}(II)$, 2 is still formed.⁵ We have investigated the ability of surfactants and several cations to alter the partitioning of A between dimerization and further reduction.

The electrolysis of 0.010 M 1 and differential-pulse polarography of 1.0×10^{-4} M 1 in various media are summarized in Table I. In 1:1 (v/v) EtOH-pH 5.1 0.250 and

Table I. Electrolysis and Differential-Pulse Polarography of 1

				yield, ^d				
		additive,		%		$-E_{1}$	$-E_{1/2}$, V	
entry	medium ^{a,b}	0.100 M	μ^{c}	2	3	I	II	
1	1:1 EtOH $-H_2O$		0.125	12	61	1.07	1.37	
2	(Na) 1:1 EtOH-H ₂ O (Na)		0.225	11	64	1.06	1.36	
3	$1:1 EtOH-H_2O$ (Na)	NaBr	0.225	12	60	1.06	1.36	
4	$1:1 EtOH-H_2O (Na)^{f}$	NaBr	0.225	17	60	0.96	g	
5^h	1:1 EtOH- H_2O (Na)		0.125	24	3			
6	1:1 EtOH-H ₂ O (K)	KBr	0.225	4	72	1.06	1.32	
7	1:1 EtOH-H ₂ O (K) ^{<i>i</i>}	KBr	0.225	5	76	1.19	1.30	
8	$1:1 EtOH-H_2O$ (Na)	Me₄NBr	0.225	1	95	1.06	1.18	
9^h	$1:1 EtOH-H_2O$ (Na)	Me₄NBr	0.225	14	45			
10	$1:1 EtOH-H_2O$ (Na)	$\mathrm{Bu}_4\mathrm{NBr}$	0.225	4	85	1.06	1.22	
11	$1:1 \text{ EtOH}-H_2O$ (Na)	HTABr	0.225	3	86	1.06	j	
12	$1:3 EtOH-H_2O$ (Na)		0.125	2	91	0.96	1.26	
13^{h}	$1:3 \text{ EtOH}-H_2O$ (Na)	Me_4NBr	0.225	7	63	0.97	1.13	
14^h	$1:3 EtOH-H_2O$ (Na)	HTABr	0.225	1	97	1.01	k	
15	H_2O (Na)		0.250			0.92	1.21	
16	H_2O (Na)	NaBr	0.350			0.91	1.18	
$\overline{17}$	H_2O (Na)	Me₄NBr	0.350			0.90	1.11	
18	H_2O (Na)	HTABr	0.350	1	94		1.09	
19	H_2O (Na)	HTABr	0.225	1	94	0.07	1.00	
20	H_2O (Na) ^f	HTABr	0.225	-		0.88	1.11	
21^{h}	H_2O (Na)	HTABr	0.350	1	91			
22	H_2O (Na)	NaDodSO4		3	85	l	1.22	
23	H_2O (Na)	Brij 35	0.250	3	85	1.01	1.36	
a T T	$(N_{\rm e}) = N_{\rm e} 0.00$	N. N.CO.II	1 00		~	(77)	wo	

 a H₂O (Na) = NaOCOMe-MeCO₂H buffer; H₂O (K) = KO-COMe-MeCO₂H buffer in entry 6 and KH₂PO₄-K₂HPO₄ buffer in entry 7. The pH of the buffer before the addition of additive and/or EtOH, if used, was 5.1 unless noted otherwise; the ratio indicates v/v composition. ^bFor differential-pulse polarography in entries 15-23, the medium contained 0.5% (v/v) EtOH. ^c For the solution as a whole. ^d From electrolysis of 0.010 M 1 at -1.55 V (vs. SCE) unless noted otherwise. "From differential-pulse polarography of 1.0×10^{-4} M 1. ^f pH 3.5. ^g Only an ill-defined shoulder was observed at ca. -1.35 V. ^h Electrolysis at -1.275 V. ⁱ pH 7.0. ^j Only an ill-defined shoulder was observed at ca. -1.14 V. ^k Only an ill-defined shoulder was observed at ca. -1.09 V. ⁱ The peak was splitted was a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a co V. ^j The peak was splitted was to be a baser of a CO V. ^j The peak was splitted was to be a co V. ^j The peak was splitted into components at -0.96 and -0.99 V, presumably due to absorption of NaDodSO₄ on the electrode: Schmid, R. W.; Reilley, C. N. J. Am. Chem. Soc. 1958, 80, 2087.

0.450 M NaOCOMe-MeCO₂H buffer (entries 1 and 2, respectively), and in the former with added 0.100 M NaBr (entry 3), the yield of **3** was essentially the same. Also, the same $E_{1/2}(I)$ and -(II) values were determined in entries 1-3. Thus, in these media with Na^+ as the cation, the nature of the reduction does not depend on ionic strength over the range of total $\mu = 0.125 - 0.225$. However, with the substitution of K^+ for Na⁺ (entry 6), the yield of 3 increased, and $E_{1/2}(II)$ underwent an anodic shift. Greater changes in the yield of 3 and $E_{1/2}(II)$ were obtained when 0.100 M Me₄NBr, Bu₄NBr, and hexadecyltrimethylammonium bromide (HTABr) were added to the reaction mixture of entry 1 to give those of entries 8, 10, and 11, respectively. But note the invariance of $E_{1/2}(I)$, which is consistent with the proton-assisted character of the first electron transfer³ and indicates that the shifts of $E_{1/2}(II)$ are not due to double-layer effects derived from specific

⁽¹⁾ For examples, see: (a) Kaifer, A. E.; Bard, A. J. J. Phys. Chem. 1985, 89, 4876. (b) McIntire, G. L.; Blount, H. N. In Solution Behavior of Surfactants—Theoretical and Applied Aspects; Mittal, K. L., Fendler, E. J., Eds.; Plenum: New York, 1982; Vol. II, p 1101. (c) McIntire, G. L.; Blount, H. N. J. Am. Chem. Soc. 1979, 101, 7720 and references therein

⁽²⁾ For examples, see: (a) Honnorat, A.; Martinet, P. Electrochim. Acta 1983 28, 1703. (b) Franklin, T. C.; Honda, T. In Micellization, Solubilization, and Microemulsions; Mittal, K. L., Ed.; Plenum: New York, 1977; Vol. II, p 617. (c) Johnston, J. C.; Faulkner, J. D.; Mandell, L.; Day, R. A., Jr. J. Org. Chem. 1976, 41, 2611 and references therein. (3) (a) Zimmer, J. P.; Richards, J. A.; Turner, J. C.; Evans, D. H. Anal.

Chem. 1971, 43, 1000. (b) Pasternak, R. Helv. Chim. Acta 1948, 31, 753. (4) For a discussion of the mechanism of electrochemical reduction of

 $[\]alpha,\beta$ -unsaturated carbonyl compounds in aqueous media, see: Baizer, M.

<sup>M.; Feoktistov, L. G. In Organic Electrochemistry, 2nd ed.; Baizer, M. M.; Feoktistov, L. G. In Organic Electrochemistry, 2nd ed.; Baizer, M. M., Lund, H., Eds.; Marcel Dekker: New York, 1983; p 359.
(5) Electrolysis of 0.01 M 1 at -1.55 V in 1:1 (v/v) EtOH-pH 5.1 NaOCOMe-MeCO₂H buffer gave a coulometric n value of 1.58,^{3a} which corresponds to 42% and 58% yields of 2 and 3, respectively, if only these</sup> compounds are formed.